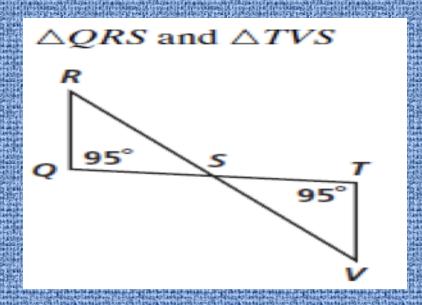


Congruent Triangles	Quadrilaterals	Circles	Parallel and Perpendicular Lines	Similarity
<u>\$100</u>				
<u>\$200</u>	<u>\$200</u>	<u>\$200</u>		
<u>\$300</u>		<u>\$300</u>		


Given: $\overline{AT} \cong \overline{GS}$, $\overline{AT} \parallel \overline{GS}$

Prove: $\triangle GAT \cong \triangle TSG$

State whether the pair of figures are congruent. Explain

$\triangle LMN \cong \triangle HIJ$. Which of the following are not necessarily true?

I.
$$\angle L \cong \angle H$$

III.
$$\angle N \cong \angle I$$

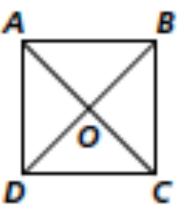
II.
$$\overline{LM} \cong \overline{IJ}$$
IV. $\overline{LN} \cong \overline{HJ}$

A I and II

C III and IV

E none of the above

B II and III


D I and IV

Write a two column proof.

Given: O is the midpoint of \overline{AC} and of \overline{BD} .

Prove: $\triangle AOD \cong \triangle COB$

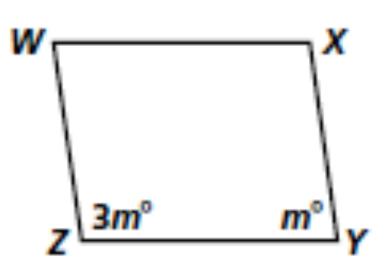
The tree at the right is perpendicular to the ground containing points B, C, D, and E. The support wires running from the tree to points B, C, and D are the same length. Is this enough information to conclude that $\triangle AEB$, $\triangle AEC$, and $\triangle AED$ are congruent? Explain.

What is the most precise name for a quadrilateral with vertices (2, -1), (6, 3), (-2, 3), and (2, 9)?

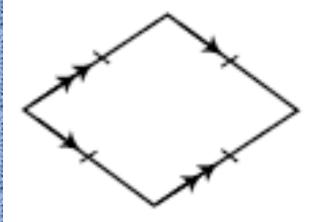
A rectangle B parallelogram

C kite D rhombus

Which is sufficient to prove that a quadrilateral is a rhombus?


- A The diagonals bisect each other.
- B The diagonals are perpendicular.
- C All four sides are congruent.
- D A pair of opposite sides are congruent and parallel.
- E none of the above

Find the value of m in parallelogram WXYZ.


A 40 B 45

C 90 D 135

What is a name for the quadrilateral below?

I. rectangle
 III. rhombus

A I and II

C III and IV

E none of the above

II. square

IV. parallelogram

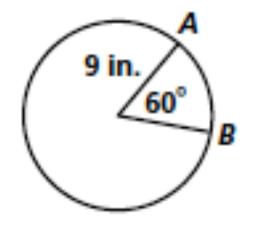
B I, III, and IV

D IV only

In quadrilateral BCDE, $\angle B$ is congruent to $\angle E$. How could BCDE not be classified?

A square B trapezoid

C kite D rectangle

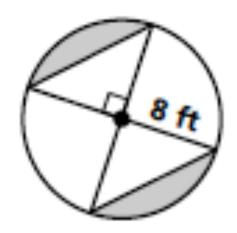


A circle has radius 12 cm. The central angle of a sector measures 150. What is the area of the sector?

- A $60\pi \text{ cm}^2$
- **B** $10\pi \, \text{cm}^2$
- C $144\pi \text{ cm}^2$
- **D** $67.5\pi \text{ cm}^2$
- E none of the above

Jamal and Grace are going to divide a slice of pizza evenly. The measure of the pizza slice's arc is 60 and the radius of the pizza is 9 in. Find the arc length of Grace's slice.

A 1.5π in.


B 3π in.

C 6π in.

D 9π in.

Find the area of the shaded region.

A
$$(32 - 16\pi)$$
 cm

B
$$(16\pi - 32)$$
 cm

C
$$(64 - 32\pi)$$
 cm

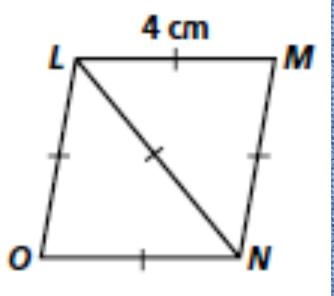
D
$$(32\pi - 64)$$
 cm

Which of the following can be the length of the sides of a 45°-45°-90° triangle?

I.
$$\frac{1}{2}$$
, 1, $\frac{\sqrt{3}}{2}$
II. 2, 2, $2\sqrt{2}$
III. 3, 3, $3\sqrt{3}$

A I only B II only C III only

D II and III

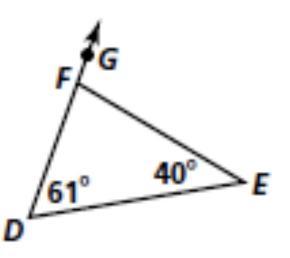

Find the area of rhombus LMNO.

A 16 cm²

B $8\sqrt{3}$ cm²

C 8 cm²

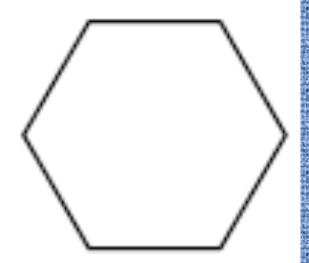
D $4\sqrt{3}$ cm²



What is $m \angle EFG$?

A 69 **B** 79

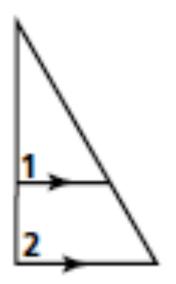
C 100 D 101



Find the measure of one of the interior angles of the regular polygon shown.

A 60 B 120

C 135 D 145


How should $\angle 1$ and $\angle 2$ be classified?

A alternate interior angles

B corresponding angles

C same-side interior angles

D vertical angles

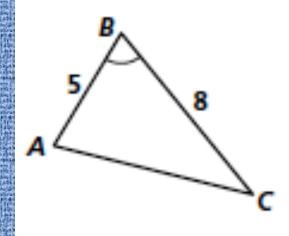
Which of these lines is perpendicular to the line

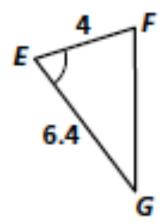
$$y = 2x + 6$$
?

A
$$2y = -4x + 3$$

$$C 2y = x + 3$$

B
$$2y = 4x + 3$$


$$D -2y = x + 3$$



Writing Describe three pairs of angles that can be used to determine whether two lines are parallel. Include a diagram.

How can you prove $\triangle ABC \sim \triangle FEG$?

- A AA ~ Postulate
 B SSS ~ Theorem
- C SAS ~ Theorem D ASA ~ Theorem
- E none of the above

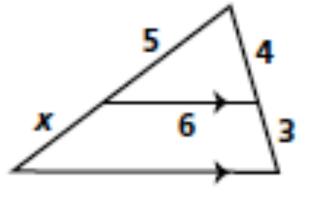
$\triangle XYZ \sim \triangle RST$. What can you conclude?

$$\mathbf{A} \quad XY = RS$$

B
$$m \angle X = m \angle Y$$

$$C m \angle S = m \angle Y$$

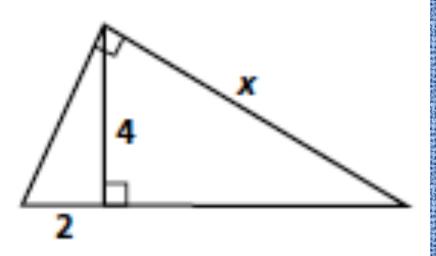
$$D \triangle XYZ \cong \triangle RST$$


Find the value of x.

 $A = \frac{15}{4}$

 $B = \frac{12}{5}$

 $C = \frac{20}{3}$


D 2

Find the value of x.

A 8 **B** $2\sqrt{5}$ **C** $4\sqrt{5}$ **D** $16\sqrt{5}$

A tree casts a shadow 40 ft long. A man who is 6 ft tall stands nearby and casts a shadow 9 ft long. Find the height of the tree.

